

27th International Symposium on Space Flight Dynamics 18th Australian International Aerospace Congress Melbourne, Australia, 24-26 February 2019

Introduction

MarCO Mission Overview

- Twin 6U CubeSats launched alongside InSight in May 2018
- Primary mission to demonstrate interplanetary CubeSat technologies
 - IRIS radio
 - Navigability
 - Ability to perform Trajectory Correction Maneuvers (TCMs)
- Nominal mission to provide real time relay of Insight Entry, Descent, and Landing (EDL)

Unique Aspects of MarCO requiring telemetry

- Similar to larger spacecraft
 - Data types Doppler, Range, and ΔDOR
 - Shorter passes due to power constraints
 - High number of ΔDOR using InSight opportunities
- Maneuvers implemented using simple cold gas system
 - Accurate maneuvers depended on accurate thruster modeling
 - Wheel-speed telemetry used to improve knowledge of thrusters from start of mission
- MarCO-B Launched with two leaks
 - Leaks themselves led to significant thrusting
 - Mitigation techniques resulted in large number of small ΔVs
 - Significant telemetry processing required to generate reliable orbit determination (OD) solutions during cruise

Thruster Values

Wheel-speed Derived

MarCO Thruster System

- Cold gas propulsion system provided by VACCO
 - Integrated storage tank
 - 4 Trajectory Correction (TCM) thrusters (B, C, F, G)
 - 4 Attitude Control thrusters canted 60° (A, D, E, H)
 - Approximately 40 sec specific impulse
 - Each thruster ~25±10 mN
- Integrated XACT Attitude Control system (ACS) provided by Blue Canyon Technologies
- Maneuvers implemented by:
 - Opening tank-to-plenum valve to regulate to known pressure
 - Commanding spacecraft to specified TCM attitude
 - Commanding ACS system to duty cycle plenum-tospace valves (thrusters) for a specified number of thruster seconds
 - ACS controls duty cycle to maintain attitude during TCM

Thruster Calibration Design

- In order to perform initial maneuver design needed:
 - Approximate thrust level of each thruster
 - Expected duty cycle at steady state
- Did not want to perform thruster calibration long enough to get to steady state
- Executed three 10-second burns, mutually orthogonal and 55° from earth line, visible on low gain antenna (LGA).
- Recorded thruster counts and reaction wheel speeds from telemetry (no accelerometer available)
- Executed on A soon after launch

Thruster Calibration Data and Processing

- Estimated thrust levels for each thruster and center of mass
- Used Doppler to observe total applied ΔV on earth line
- Used wheel speed change as measurement of applied torque
 - Wheel speeds measured at non-rotating times to remove noisy body rate data effects
- Implemented in normal OD batch filter with low-fidelity models of actual thrusting event
- Note: This technique does not yield significant new information on total ΔV . It only helps differentiate the individual components.

Thruster Calibration Results and Performance

Thruster		-A1 (mN) 1σ		-A2 (mN) 1σ	TCAL Force	-A3 (mN) 1σ
A	24.1	2.3	45.7	8.7	24.4	9.7
В	11.4	4.0	10.2	3.3	14.7	3.1
C	26.0	3.6	27.9	3.1	21.2	2.8
D	26.4	10.0	29.2	10.0	25.4	10.0
E	22.5	2.4	16.9	8.7	29.4	9.7
F	35.2	7.3	33.7	5.3	35.7	6.1
G	45.2	6.1	52.3	5.2	34.5	5.2
Н	25.4	2.7	26.1	9.9	26.1	9.9

Estimated thruster levels

Doppler-only yields 7.0 mN uncertainties A priori uncertainty of 10.0 mN

- Balancing torques gave [90%, 90%, 26.4%, 50.3%] duty cycles
- Expected 1.99 mm/sec² ΔV to thruster second conversion
- Actual duty cycles were slightly higher due to RCS thruster usage
- Predictions still helpful in designing initial maneuvers, and demonstrating wheel-based technique

Maneuver Implementations

	TCM	$\Delta \mathbf{V}$	Thruster Time	Ratio
		(mm/sec)	(sec)	(mm/sec ²)
	TCAL-A1	67.4	30.01	2.247
	TCAL-A2	58.9	30.07	1.959
	TCAL-A3	54.6	30.03	1.817
	TCM-A1x	495.3	253.68	1.953
	TCM-A1a	481.2	257.13	1.871
	TCM-A1b1	961.0	504.60	1.905
	TCM-A1b2	914.5	504.58	1.812
	TCM-A1b3	431.6	254.95	1.693
	TCM-A1b4	468.6	255.39	1.835
	TCM-A1b5	508.2	254.76	1.995
	TCM-A1c1	477.2	256.20	1.863
	TCM-A1c2	502.3	254.64	1.973
	TCM-A1c3	532.0	256.31	2.076
	TCM-A1c4	548.9	255.32	2.150
	TCM-A1d1	1926.1	972.22	1.981
	TCM-A1d2	340.5	194.41	1.752
	TCM-A1d3	178.4	90.65	1.968
	TCM-A1e	269.8	147.41	1.831
	TCM-A2a	247.7	130.30	1.901
	TCM-A2b	266.7	130.27	2.047
اج	TCM-A2c	295.7	80.50	3.673
<u> </u>	TCM-A3a	215.3	55.77	3.861
ac	TCM-A3b	215.3	51.36	4.192
capabilit	TCM-A3c	242.2	51.70	4.684
S	TCM-A3d	242.2	61.74	3.922

oss of plenum regulation

Telemetry-based Mitigation

MarCO-B's Leak and

MarCO-B's Thruster Leak

- MarCO-B launched with known small leak in pressure control valve
 - Plenum would slowly recharge after use
 - Cycling valve could lead to higher or lower leak level regimes
- Spacecraft in nominal mode oriented +Y axis to sun and spun about that axis every 45 minutes to cancel out solar torques
- First thruster calibration attempt cycled to a higher leak rate
 - Spacecraft reaction wheels began saturating
 - Applied torques indicated that thruster D also had a small leak
- Spacecraft began experiencing wheel-desaturation and tumbling cycles

Anatomy of a Wild Ride

"Rotisserie mode" helped cancel out most torque from the thruster leak

However, if the thruster leak was too large, angular momentum would get too large before a rotisserie rotation could complete. This led to a "wild ride"

Leak Mitigation Blowdown Technique

- Spacecraft team quickly implemented a "slow blowdown" (SBLO) method to reduce wild rides
 - Effort to keep plenum pressure low enough to prevent "wild rides"
 - Every 30 minutes would slew to selected attitude
 - Open four TCM thruster valves to release any pressure in the plenum without adding angular momentum
 - Mostly successful, though a high leak rate could saturate wheels before SBLO occurred (4 times after implementation)
- Ultimately led to three OD challenges
 - Constant leak with sun direction rotation
 - Modeled as sun-direction constant acceleration
 - Difficult to estimate due to lack of reasonable a priori values
 - Estimating many small SBLO events
 - Fitting through wild rides with large and uncertain thrusting events
 - Resolved by quickly moving initial epoch past events, and relying on ΔDOR to constrain short arcs

Estimating Leak Level

- The thruster leak could be approximated as sun-direction constant acceleration (aliased with solar radiation pressure)
- Needed an approximate a priori value and reasonable range, since we weren't sure of value to an order of magnitude
- Got wheel change speed between SBLOs from telemetry
- Combined with pressure data to get formula for expected accumulated torque as a function of leak size

$$\Delta \ell = \sum_{i} C_i \left(\mathbf{r}_4 \times \mathbf{d}_4 \right) \left(P_0 + \frac{P_f - P_0}{t_f - t_0} (t_i - t_0) \right) A$$

- Used to compute average accelerations in a least squares filter.
 - Computed an 0.015 mm diameter leak, with 2 μN force
 - Somewhat insensitive to plenum pressure, probably due to higher pressures holding valve closed more
 - Sun direction force varied from 0.1 to 1.0 μN, providing reasonable bounds for OD
- Technique not repeated throughout cruise, since Doppler-based estimates held within reason

Estimating Blowdowns

- SBLOs were hundreds of small ΔVs
 - Initially, did not have good values for timing, attitude or size
 - Difficult to estimate, so instead tried to estimate constant force and accept discontinuities in residuals
 - Constraining direction of these constant accelerations became challenging quickly
- Instead, data were available in telemetry
 - Times of SBLOs were available as "event records" (EVRs)
 - Attitude quaternion at given SCLK in normal telemetry
 - With known I_{sp} and fixed plenum volume, ΔV could be computed from ideal gas law as:

$$\Delta V = \left(\frac{P_2}{T_2} - \frac{P_1}{T_1}\right) \frac{V}{M} \frac{gI_{sp}}{m_{s/c}}.$$

ΔV computation ignores plenum-refilling and potential liquification of propellant

- Needed attitude quaternions, and temperature/pressure values at blowdowns
- Mission control team began collecting that data around SBLOs automatically and prioritizing for downlink
- Once this change made, getting event records was most unreliable part, so added algorithm to identify pressure drops indicative of a ΔV
- Have looser inputs for cases where no data are available
- Estimated stochastic scale factor on ΔV, and small off-axis terms with constant size

Leak Estimate Results

- This technique was successful in letting us navigate to Mars with reasonable accuracy
- Had higher scale factors during higher pressures, due to ideal gas assumptions being more inaccurate
- Leak acceleration rates stayed reasonable
- Kept MarCO-B arcs short, moving past "wild rides" quickly, because it was hard to get good a priori values for those ΔVs
- Large number of ΔDOR measurements helped make short arcs acceptable

Conclusions

Conclusions

- Both MarCO-A and MarCO-B arrived at Mars and completed the relay mission
- Success depended on a few things
 - Availability of telemetry
 - Willingness of navigators to use telemetry in new ways
 - Cooperation and communication between mission control team and navigators
- Advice for future CubeSats
 - Limited platforms have limited capabilities and unique problems
 - More robust and creative usage of alternative data sources may be necessary as an alternative to large teams and continuous tracking coverage
 - Teamwork and communications always critical

First image received at JPL from InSight, via MarCO

jpl.nasa.gov